Proximal Mapping for Symmetric Penalty and Sparsity

نویسندگان

  • AMIR BECK
  • NADAV HALLAK
چکیده

This paper studies a class of problems consisting of minimizing a continuously differentiable function penalizedwith the so-called `0-norm over a symmetric set. These problems are hard to solve, yet prominent in many fields and applications.We first study the proximal mapping with respect to the `0-norm over symmetric sets, and provide an efficient method to attainit. The method is then improved for symmetric sets satisfying a sub-modularity-like property, which we call “second ordermonotonicity” (SOM). It is shown that many important symmetric sets, such as the `1, `2, `∞-balls, the simplex and the full-simplex, satisfy this SOM property. We then develop, under the validity of the SOM property, necessary optimality conditions,and corresponding algorithms that are guaranteed to converge to points satisfying the aforementioned optimality conditions. Weprove the existence of a hierarchy between the optimality conditions, and consequently between the corresponding algorithms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tree-guided Group Lasso for Multi-response Regression with Structured Sparsity, with an Application to Eqtl Mapping1 by Seyoung Kim

We consider the problem of estimating a sparse multi-response regression function, with an application to expression quantitative trait locus (eQTL) mapping, where the goal is to discover genetic variations that influence gene-expression levels. In particular, we investigate a shrinkage technique capable of capturing a given hierarchical structure over the responses, such as a hierarchical clus...

متن کامل

Tree-guided Group Lasso for Multi-response Regression with Structured Sparsity, with an Application to Eqtl

We consider the problem of estimating a sparse multi-response regression function, with an application to expression quantitative trait locus (eQTL) mapping, where the goal is to discover genetic variations that influence gene-expression levels. In particular, we investigate a shrinkage technique capable of capturing a given hierarchical structure over the responses, such as a hierarchical clus...

متن کامل

Optimization Problems Involving Group Sparsity Terms

This paper studies a general form problem in which a lower bounded continuously differentiable function is minimized over a block separable set incorporating a group sparsity expression as a constraint or a penalty (or both) in the group sparsity setting. This class of problems is generally hard to solve, yet highly applicable in numerous practical settings. Particularly, we study the proximal ...

متن کامل

SMOOTHING PROXIMAL GRADIENT METHOD FOR GENERAL STRUCTURED SPARSE REGRESSION By

We study the problem of estimating high dimensional regression models regularized by a structured sparsity-inducing penalty that encodes prior structural information on either the input or output variables. We consider two widely adopted types of penalties of this kind as motivating examples: 1) the general overlapping-group-lasso penalty, generalized from the group-lasso penalty; and 2) the gr...

متن کامل

A Smoothing Proximal Gradient Method for General Structured Sparse Regression

We study the problem of estimating high dimensional regression models regularized by a structured sparsity-inducing penalty that encodes prior structural information on either the input or output variables. We consider two widely adopted types of penalties of this kind as motivating examples: 1) the general overlapping-group-lasso penalty, generalized from the group-lasso penalty; and 2) the gr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017